Tenka1 Programmer Contest

D - Crossing


Time limit時間制限 : 2sec / Memory limitメモリ制限 : 1024MB

配点 : 500

問題文

整数 N が与えられます。\{1,2,...N\} の部分集合の組 (S_1,S_2,...,S_k) であって、以下の条件を満たすものが存在するか判定し、 存在する場合はひとつ構成してください。

  • 1,2,...,N のうちどの整数も、S_1,S_2,...,S_k のうちちょうど 2 つに含まれる
  • S_1,S_2,...,S_k のうちどの 2 つの集合をとっても、それらに共通して含まれる要素はちょうど 1 つである

制約

  • 1 \leq N \leq 10^5
  • N は整数である

入力

入力は以下の形式で標準入力から与えられる。

N

出力

条件を満たす部分集合の組が存在しない場合、No を出力せよ。 存在する場合、まず Yes を出力し、次いで以下の形式で部分集合の情報を出力せよ。 ただし、S_i=\{S_{i,1},S_{i,2},...,S_{i,|S_i|}\} とする。

条件を満たすものが複数ある場合、どれを出力しても構わない。

k
|S_1| S_{1,1} S_{1,2} ... S_{1,|S_1|}
:
|S_k| S_{k,1} S_{k,2} ... S_{k,|S_k|}

入力例 1

3

出力例 1

Yes
3
2 1 2
2 3 1
2 2 3

(S_1,S_2,S_3)=(\{1,2\},\{3,1\},\{2,3\}) とすれば、条件を満たすことが確認できます。


入力例 2

4

出力例 2

No

Score : 500 points

Problem Statement

You are given an integer N. Determine if there exists a tuple of subsets of \{1,2,...N\}, (S_1,S_2,...,S_k), that satisfies the following conditions:

  • Each of the integers 1,2,...,N is contained in exactly two of the sets S_1,S_2,...,S_k.
  • Any two of the sets S_1,S_2,...,S_k have exactly one element in common.

If such a tuple exists, construct one such tuple.

Constraints

  • 1 \leq N \leq 10^5
  • N is an integer.

Input

Input is given from Standard Input in the following format:

N

Output

If a tuple of subsets of \{1,2,...N\} that satisfies the conditions does not exist, print No. If such a tuple exists, print Yes first, then print such subsets in the following format:

k
|S_1| S_{1,1} S_{1,2} ... S_{1,|S_1|}
:
|S_k| S_{k,1} S_{k,2} ... S_{k,|S_k|}

where S_i={S_{i,1},S_{i,2},...,S_{i,|S_i|}}.

If there are multiple such tuples, any of them will be accepted.


Sample Input 1

3

Sample Output 1

Yes
3
2 1 2
2 3 1
2 2 3

It can be seen that (S_1,S_2,S_3)=(\{1,2\},\{3,1\},\{2,3\}) satisfies the conditions.


Sample Input 2

4

Sample Output 2

No

Submit提出する